

A cow for Australia

Jennie Pryce

Selection index

- Includes traits that contribute to breeding objective e.g. profit
- Shapes the future cow
- Tool to select parents of the next generation
- You get what you breed for!

National Breeding Objective Survey

1000 minds*

Martin-Collado et al. (2015) JDS 98: 4148-4161

8 less lameness cases year	per 100 cows per	or	1.5 kg more protein per cow per year	
this o	ne		this one	
undo last decision the		ey are equa	skip this question for now	
undo last decision		ey are equa	skip tills question for it	

Martin-Collado et al. (2015) JDS 98: 4148-4161

Year of Birth of 1347 (Holstien) & 723 (Holstien X) cows

Q

Test Future Scenarios

31

Genotyping Cost Benefit Anaylsis

x close

Home

Breeding Values

Data Services

Learning Resources

Projects and Industry Initiatives

Events and Releases

News

About DataGene

Genetic Futures Report

Copyright © DataGene Ltd. 2017. All Rights Reserved.

Last update: 27/03/17 National herd ID: 2345456X Your Herd's Genetic Snapshot

Cows currently in herd: 706

Year of Birth

Report breed code: Holstein and Holstein X

Difference between top and bottom 25% of cows

Milk income over feed costs

What about health, fertility, components?

Only Australia (BPI) and Ireland (EBI) have validated selection index using independent economic data

Traits included in 21 total merit indices of the United States and 16 other countries

John Cole and Paul VanRaden "Possibilities in an age of genomics: The future of selection indices"

Selection indices in a nutshell

Future selection objectives

Future of dairy indices?

Using technology

New traits and reference populations

- Genomic "only" breeding values
 - Feed saved
 - Heat tolerance
 - Methane emissions
 - Some health traits
 - Other high cost phenotypes
- Lower reliabilities than other breeding values
 - Feed saved and heat tolerance average reliability ~ 35%

Female reference populations in Australia

Ginfo – Australia's genomic information nucleus

Search for herds that have great phenotypes

Scoring system

Best 100 herds selected and genotyped

All States included

All cows genotyped

Ginfo+ 200 herds

Genomic evaluations enhanced GEBVs to farmers

Heat tolerance

Dairy cattle and ambient heat load

THI threshold (60) is equivalent to 20°C (68°F) at 45% relative humidity

Adapted from NRC (1981)

By region

enomic prediction equation was developed from a reference population of 2,236 sires (with heat tolerance phenotypes on daughter

Heat tolerance breeding values for Holsteins and Jerseys released in Dec 2018

Genomic Selection

Empirical validation

- Genomic breeding values calculated for 400 heifers
- 24 predicted most heat tolerant,
 24 predicted most susceptible
 selected on genomic BV
- Run through a simulated heat wave
- 4 day event, measure milk production, core temperature, intra-vaginal temperature

Garner et al (2016) Scientific Reports

Empirical validation Decline in milk production

Garner et al (2016) Scientific Reports

Difference in intra-vaginal temperature

Female reference populations in Australia

What is "Feed Saved"?

Maintenance from Bodyweight Breeding Value

Global Dry Matter Initiative: **g**DMI

- 9 countries, 15 parties
- ~9,000 phenotyped animals
- ~6,000 genotyped animals
- ~12,000 parities
- At >\$1000/cow/yr and \$50/genotype this dataset is worth >\$10,000,000

International genetic evaluations for feed intake in dairy cattle through the collation of data from multiple sources

D. P. Berry,*1 M. P. Coffey,† J. E. Pryce,‡ Y. de Haas,§ P. Løvendahl,# N. Krattenmacher, II J. J. Crowley,¶ Z. Wang, D. Spurlock, ** K. Weigel, †† K. Macdonald, ‡‡ and R. F. Veerkamp§

*Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Co. Cork, Ireland †Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Easter Bush Campus, Midlothian EH25 9RG, United Kingdom

La Tro &Anim: #Depa Illnstitu ¶Depa **Depa ttDep

J. Dairy Sci. 97:1799-1811 http://dx.doi.org/10.3168/jds.2013-7368 © American Dairy Science Association®, 2014.

Imputation of genotypes from low density (50,000 markers) to high density (700,000 markers) of cows from research herds in Europe, North America, and Australasia using 2 reference populations

J. E. Pryce,*†‡¹ J. Johnston,§ B. J. Hayes,*†‡ G. Sahana,# K. A. Weigel,II S. McParland,¶ D. Spurlock,** N. Krattenmacher, †† R. J. Spelman, ‡‡ E. Wall, §§ and M. P. L. Calus##

*Department of Environment and Primary Industries, Agribio, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia †Dairy Futures Cooperative Research Centre, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia

La Trobe University, 5 Ring Road, La Trobe University, Bundoora, VIC 3083, Australia Canadian Dairy Network, Guelph, Ontario, N1K 1E5, Canada

*Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark IDepartment of Dairy Science, University of Wisconsin, Madison 53706

¶Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Co. Cork, Ireland

**Department of Animal Science, Iowa State University, Ames 50011

++Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24118 Kiel, Germany

±±LIC, Private Bag 3016, Hamilton 3240, New Zealand

§§Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom ##Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, 8200 AB Lelystad, the Netherlands

J. Dair http://dx.aoi.org/10.3100/jas.2011-5200

© American Dairy Science Association®, 2012.

Improved accuracy of genomic prediction for dry matter intake of dairy cattle from combined European and Australian data sets

Y. de Haas,*1 M. P. L. Calus,* R. F. Veerkamp,* E. Wall,† M. P. Coffey,† H. D. Daetwyler,‡ B. J. Hayes,‡§# and J. E. Pryce‡§

*Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, PO Box 65, NL-8200 AB Lelystad, the Netherlands †Sustainable Livestock Systems Group, Scottish Agricultural College, Easter Bush, Midlothian, EH25 9RG, United Kingdom ±Biosciences Research Division, Department of Primary Industries Victoria, 1 Park Drive, Bundoora, Victoria 3083, Australia SDairy Futures Cooperative Research Centre, Victoria 3083, Australia #La Trobe University, Bundoora, Victoria 3086, Australia

Reference population

International collaboration essential!

Year	Status	Australian cows	Australian heifers	Overseas cows	Informative SNP
2015	Implemented	234	843	954	No
2017	Implementation late 2017	440	843	954	Yes (from 4772 beef)
2019	In development	~620	843	?	Yes

Feed saved ABV is in all 3 DataGene indices

Balanced Performance Index (BPI)

- Economic index
- Blends production, type and health traits for maximum profit
- In line with farmer preferences

Health Weighted Index (HWI)

 Fast track fertility, mastitis resistance and feed saved

Type Weighted Index (TWI)

Fast track type

10 unit increase in BPI
(i.e. ~ annual gain) would
result in ~0.55kg
improvement in feed
saved (2% of \$ response)

Example Feed Saved ABVs

Holstein	BPI	FEED SAVED	
BULL ID	BALANCED PERFORMANCE INDEX	FEED SAVED ABV	
Α	336	- 43	
В	320	- 147	
С	302	- 4	
D	301	110	
E	285	2	
F	282	- 6	
G	277	72	
192922	The state of the s	102020	

Lassen et al (Viking Genetics)

What about Feed Saved for other breeds?

- We need a cheap way of measuring feed intake
- In confined systems:

 Lassen et al (Viking) 3D
 cameras to measure feed intake on commercial farms
- Bite monitors:
 - Bite rate
 - Bite amount
 - Pasture quality

What's next....

- Health traits
- Predictor traits
- Mid-infra-red spectral data promising
- Not all traits will be included in the indices
- Improved data capture?

Conclusions

- Australian indices use science and farmer preference data
- Genomic selection has revolutionized breeding values in Australia e.g.
 - Feed Saved (from 2015)
 - Heat tolerance (from 2017)
- Female genomic reference populations give opportunities for new traits
 - Main challenge is lower reliabilities
 - Tackling hard to measure traits
- Across industry collaboration on research priorities
- Help farmers make better decisions
 - Indices that align to philosophies
 - Tools make better breeding decisions

Acknowledgments

- Thanks to co-authors:
 - DataGene: Matt Shaffer, Michelle Axford, Gert Nieuwhof
 - Agriculture Victoria: Thuy Nguyen
- Others who have provided material for this presentation
- Funding from DairyBio a joint dairy research investment by Dairy Australia, Gardiner Foundation and Agriculture Victoria

